Lecture 02: Sentences and Grammars

Andrei Antonenko

LIN 311: Syntax

August 30, 2018

Outline

- Sentences Strings or Trees?
- 2 Phrase-Structure Rules
- Methodology of Syntax Scientific Method Competence vs. Performance

Sentences

A. Antonenko (Syntax)

Sentences: strings of words?

Question: Are sentences linear chains of words? Or is there more structure?

$$\begin{array}{lll} (1) & \mbox{a.} & \mbox{The} \Rightarrow \mbox{cat} \Rightarrow \mbox{eats} \Rightarrow \mbox{fish.} \\ & \mbox{b.} & \mbox{One} \Rightarrow \mbox{camel} \Rightarrow \mbox{hates} \Rightarrow \mbox{goat} \Rightarrow \mbox{cheese.} \end{array}$$

To reduce the possibilities we might assign transitional probabilities:

- $P(the \Rightarrow V) = 0$: Verbs don't occur after the
- $P(eat \Rightarrow \text{TYPE OF FOOD}) > P(eat \Rightarrow \text{TYPE OF FURNITURE})$

Problems with string approach

- Some strings would have very low probabilities, but are grammatical nevertheless.
 - (2) Colorless green ideas sleep furiously.
- It is impossible to produce long distance dependencies, such as *either ... or* or *if ... then*:
 - (3) a. Either the girl eats ice cream, or the girl likes candy.
 - b. If the girl eats ice cream, then the boy eats burgers.
 - c. *Either the girl eats ice cream, then the boy eats burgers.
 - d. *If the girl eats ice cream, or the girl likes candy.

Question rule

- Yes/no questions can be answered by "yes" or "no" or "maybe"
 - (4) a. Alex can't eat chocolate covered almonds.b. Can't Alex eat chocolate covered almonds?
- How do we get the question sentence?

Question rule

- (5) a. Alex can't eat chocolate covered almonds.
 - b. Can't Alex eat chocolate covered almonds?

Hypothesis #1

Move the 2nd word to the front of the sentence.

Problem

(6) a. The TA can't eat chocolate covered almonds.b. *TA the ____ can't eat chocolate covered almonds?

Question rule

- (7) a. Alex can't eat chocolate covered almonds.
 - b. Can't Alex eat chocolate covered almonds?

Hypothesis #2

Move the auxiliary to the front of the sentence.

Problem

Which auxiliary?

- (8) a. The TA has been eating chocolate covered almonds.
 - b. *Been the TA has ____ eating chocolate covered almonds?

Question rule

- (9) a. Alex can't eat chocolate covered almonds.
 - b. Can't Alex eat chocolate covered almonds?

Hypothesis #3

Move the first auxiliary to the front of the sentence.

Problem

- (10) a. The TA who is here can eat chocolate covered almonds.
 - b. *Is the TA who ____ here can eat chocolate covered almonds?
 - c. Can the TA who is here ____ eat chocolate covered almonds?

Question rule

- (11) a. Alex can't eat chocolate covered almonds.
 - b. Can't Alex eat chocolate covered almonds?

Hypothesis #4

Move the first auxiliary after the main clause subject to the front of the sentence.

It finally works!

- (12) a. [The TA who is here] has been eating chocolate covered almonds.
 - b. Has [the TA who is here] ____ been eating chocolate covered almonds?

Structure

Yes/no question rule

Move the first auxiliary after the main clause subject to the front of the sentence.

- Notice that the rule we came up with refers to *chunks* of the sentence, such as the *subject*.
- It means that sentences are not just linear strings.
- Let's try to build the theory of chunks.

Phrase-Structure Rules

Phrase-structure rules

- $X \rightarrow Y Z$ means that X consists of two parts: Y and Z.
- Every times we see X, we should rewrite it as Y Z.
- If we have several ways to rewrite X, choose any.
- For example, $S \rightarrow N V$ means that S consists of N and V.
- Sentence consists of a Noun and a Verb.
- Let's try to come up with rules for English.

Grammar #1

Fish dance. Cat sleep. Dogs sing.

What about Happy fish dance? We need Adjectives

Grammar #2

Structural rules

- $\mathsf{S} \to \mathsf{NP} \; \mathsf{V}$
- ${\sf NP} \to {\sf Adj} \; {\sf N}$

Lexical rules

```
\label{eq:N} \begin{split} \mathsf{N} & 	o \textit{fish}, \ \mathsf{N} & 	o \textit{cat}, \ \mathsf{N} & 	o \textit{dogs}, \ \dots \\ \mathsf{V} & 	o \textit{dance}, \ \mathsf{V} & 	o \textit{sing}, \ \mathsf{V} & 	o \textit{sleep}, \ \dots \\ \mathsf{Adj} & 	o \textit{happy}, \ \mathsf{Adj} & 	o \textit{ugly}, \ \mathsf{Adj} & 	o \textit{grumpy}, \ \dots \end{split}
```

Happy fish dance. Grumpy cat sleep. Ugly dogs sing.

But what about Dogs sing now? We need optionality of Adj!

A. Antonenko (Syntax)

Sentences

Grammar #3

Structural rules

- $\mathsf{S} \to \mathsf{NP} \; \mathsf{V}$
- $NP \rightarrow (Adj) N$ Lexical rules

(Adj) means that Adj is optional

$$\begin{array}{l} \mathsf{N} \rightarrow \textit{fish}, \, \mathsf{N} \rightarrow \textit{cat}, \, \mathsf{N} \rightarrow \textit{dogs}, \, \dots \\ \mathsf{V} \rightarrow \textit{dance}, \, \mathsf{V} \rightarrow \textit{sing}, \, \mathsf{V} \rightarrow \textit{sleep}, \, \dots \\ \mathsf{Adj} \rightarrow \textit{happy}, \, \mathsf{Adj} \rightarrow \textit{ugly}, \, \mathsf{Adj} \rightarrow \textit{grumpy}, \, \dots \end{array}$$

Fish dance. Happy fish dance. Cat sleep. Grumpy cat sleep. Ugly dogs sing. Dogs sing.

But what about *Dogs sing songs* or *Grumpy cat eat fish*? We need objects! A. Antonenko (Syntax) Sentences 16/30

Grammar #4

Structural rules

 $S \rightarrow NP V (NP)$ (NP) means that the second NP is optional NP \rightarrow (Adj) N (Adj) means that Adj is optional Lexical rules N \rightarrow fish, N \rightarrow cat, N \rightarrow dogs, ... V \rightarrow dance, V \rightarrow sing, V \rightarrow sleep, ... Adj \rightarrow happy, Adj \rightarrow ugly, Adj \rightarrow grumpy, ...

Fish dance. Happy fish dance. Ugly dogs sing. Dogs sing. Dogs sing songs. Grumpy cat eat fish. Grumpy cat eat happy fish.

Is there another way to write this grammar?

Grammar #4'

```
Structural rulesS \rightarrow NP VPNP/VP stand for Noun/Verb PhraseNP \rightarrow (Adj) N(Adj) means that Adj is optionalVP \rightarrow V (NP)(NP) means that the NP is optionalLexical rulesN \rightarrow fish, N \rightarrow cat, N \rightarrow dogs, ...V \rightarrow dance, V \rightarrow sing, V \rightarrow sleep, ...Adj \rightarrow happy, Adj \rightarrow ugly, Adj \rightarrow grumpy, ...
```

Fish dance. Happy fish dance. Ugly dogs sing. Dogs sing. Dogs sing songs. Grumpy cat eat fish. Grumpy cat eat happy fish.

(13)	Grumpy cats eat happy fish.	
		m

Derivation		
Start	S	
Stop 1		

- Step 2 Adj N VP
- Step 3 Adj cats VP
- Step 4 grumpy cats VP
- Step 5 grumpy cats V NP
- **Step 6** grumpy cats V Adj N
- Step 7 grumpy cats V happy N
- Step 8 grumpy cats eat happy N
- Step 9 grumpy cats eat happy fish $N \rightarrow \textit{fish}$

Start with symbol S $S \rightarrow NP VP$ $NP \rightarrow Adj N$ $N \rightarrow cats$ $Adj \rightarrow grumpy$ $VP \rightarrow V NP$ $NP \rightarrow Adj N$

- $Adj \rightarrow happy$
- $\mathsf{V} \to \textit{eat}$

Trees: terminology

Methodology of Syntax

A. Antonenko (Syntax)

Scientific method

How do linguists study grammar?

- 1 Observe the linguistic data.
- Pormulate grammar as a hypothesis, make sure that the observed data is accounted for.
- **3** Test and modify our grammar in view of the predictions it makes and in view of new data we come across.

Scientific method

Linguistic data

Speakers can judge which strings on words are sentences or not: well-formedness judgments.

- Well-formed \neq Natural
 - (15) a. Colorless green ideas sleep furiously
 - b. Revolutionary new ideas happen infrequently.
- Well-formed \neq Educated
 - (16) a. Who are you going with?
 - b. Me and my friend just got back from the movies.

Corpora

- Corpora: recorded real world speech, newspapers, books, magazines, etc.
- Unfortunately, it is not enough to look at corpora:
 - They don't contain negative information (such as what sentences are unacceptable);
 - They can never contain all the sentences of a language.
- Hypotheses about the grammar often can only be proven wrong by ungrammatical sentences.
 - Hypothesis may predict something, but it may turn out to be ungrammatical.

Competence vs. Performance

- Performance: refers to what we actually produce.
- Competence: refers to what we know about language.
- The focus of generative grammar is Competence.

Infinite number of grammatical sentences

Speakers might not produce all of these sentences ever (performance), but we can judge them to be well-formed (competence).

- (17) a. The horse behind Pegasus is gray.
 - b. The horse behind the horse behind Pegasus is gray.
 - c. The horse behind the horse behind the horse behind Pegasus is gray.

d.

. . .

Revising Grammars

Grammar #4'

Structural rules

 $\begin{array}{l} \mathsf{S} \rightarrow \mathsf{NP} \; \mathsf{VP} \\ \mathsf{NP} \rightarrow (\mathsf{Adj}) \; \mathsf{N} \\ \mathsf{VP} \rightarrow \mathsf{V} \; (\mathsf{NP}) \\ \textbf{Lexical rules} \\ \mathsf{N} \rightarrow \textit{fish}, \; \mathsf{N} \rightarrow \textit{cat}, \; \mathsf{N} \rightarrow \textit{dogs}, \; \dots \\ \mathsf{V} \rightarrow \textit{dance}, \; \mathsf{V} \rightarrow \textit{sing}, \; \mathsf{V} \rightarrow \textit{sleep}, \; \mathsf{V} \rightarrow \textit{hit} \; \dots \\ \mathsf{Adj} \rightarrow \textit{happy}, \; \mathsf{Adj} \rightarrow \textit{ugly}, \; \mathsf{Adj} \rightarrow \textit{grumpy}, \; \dots \end{array}$

Notice that our current grammar generates ungrammatical:

- (18) a. *Dogs sleep cat.
 - b. *Grumpy fish hit.

How should this grammar be revised?

Revising Grammars

Lexical rules

We need to incorporate different types of verbs into our grammar – intransitive vs. transitive.

• Note, some verbs can be in both classes!

$${\sf Vi}
ightarrow {\sf sleep}, \, {\sf Vi}
ightarrow {\sf dance}, \, {\sf Vi}
ightarrow {\sf sing}, \, \ldots$$

 ${\sf Vt}
ightarrow {\sf hit}, \, {\sf Vt}
ightarrow {\sf dance}, \, {\sf Vt}
ightarrow {\sf sing}$

Structural rules